
j/

/
!

")jj

Parallel and Distributed

Dynamics Experimental

Computational Fluid

Results and Challenges

M.J. Djomehri, R. Biswas, R. Van der Wijngaart, and M. Yarrow

Computer Sciences Corporation

NASA Ames Research Center, Moffett Field, CA 94035, USA

{djomehri,rbiswas,wijngaar,yarrow}@nas.nasa.gov

Abstract

This paper describes several results of paxal]e/ and distributed computing using

a large scale production flow solver program. A coarse grained parallelization based

on clustering of discretization grids combined with partitioning of large grids for load

balancing is presented. An assessment is given of its performance on distributed and

distributed-shared memory platforms using large scale scientific problems. An exper-

iment with this solver, adapted to a Wide Area Network execution environment is

presented. We also give a comparative performance assessment of computation and

communication times on both the tightly and loosely-coupled machines.

1 Introduction

Rapid recent improvements in high-performance computing hardware have made the simu-

lation of complex flow models a viable analysis tool. However further efficiency increases

must be achieved in order to integrate this tool into the design process, which requires large

numbersof separate flow analyses. The only way in which drastic improvements in perfor-

mance can be obtained in the short term is to utilize extensively parallel and distributed

c'()mi),l_in_ r('(hrli(vw- If I}l(, fl,)\\ ;:II]_-I]\F;uS('all be carried _),lr irldel)¢'rlclentls, we speak _)f p_z-

rameter ._tudie._. which have significant inherent parallelism and require no interprocess data

c'()mmunica/i,m. These problems are w(,ll-suited for distribut_,d solution, and are the subject

of a separate study. If only _ne solution can be computed at a time. it must be produced

very quickly to make it feasible within the design cycle. In recent years significant strides

have been made towards this goal through parallelization of some flow solver programs of

importance to NASA Ames. The objective of this paper is to assess the parallel performance

of one such code, OVERFLOW, identify potential bottlenecks, and determine the impact

of these bottlenecks on performance of the code in the more demanding environment of

distributed computing using geographically separated resources.

Two realistic test cases are used for the performance evaluation of the solver. These cases

consist of viscous calculations about complex geometric configurations. Case MEDIUM con-

sists of 9 million grid points and case LARGE consists of 33 million grid points. The compu-

tations are carried out using the NASA code OVERFLOW, which deals with the geometrical

complexity of flow solution domains by allowing sets of separately generated and updated

structured discretization grids to exchange information through interpolation. We consider

both single, tightly coupled architectures (SGI Origin2000 and Cray T3E), and geograph-

ically separated machines (multiple Origins) connected using the Globus metacomputing

toolkit [8].

The remainder of this paper includes a brief overview of the numerical (Section 2) method

and parallelization (Section 3) used. The parallelization approach is compared with that used

in our earlier work [1]. and a strategy for improvement of the load balance is described in

Section 6.1. Results are presented in Section 5, and summary remarks and a discussion of

future directions is given in Section 6.

2 Numerical method

The OVE1RFLO\V (,,_Ie utiliz,'s -_()-called multi-zone overset _;ri(t svst('ms })ased _m the

(.'hinlera i14] technology to s_Ave the thin laver Xavier-Stokes equations, augnlented with

a turbulence m,,lel. It is wi,!_._v us('d iIl the aerodynamics cotntnunitv an(t is most popular

flow solver in use at .NASA Ames Research Center. It uses finite differences in space on

str_ctured grids and implicit vitae-stepping to capture near-body viscous effects. A variety

of different time-stepping and spatial differencing schemes are available. For steady-state

problems such as those studied in this paper, fast relaxation to the final solution is achieved

by a combination of a sophisticated multigrid [5] convergence acceleration scheme and a

local time-stepping approach, which allows the solution to be updated based on a spatially

varying virtual time increment.

Much of the benefit of obtaining fast and highly accurate solutions with OVERFLOW

is derived from the special properties of so-called structured discretization grids. Such grids

individually are not well suited for geometrically complex domains, so they are used within

the context of multiple overlapping grids, each of which covers only part of the domain. The

resulting configuration is called an overset grid system. The solution proceeds by updating,

at each iteration, the inter-grid boundaries on each grid with interpolated solution data

from overlapping grids. See Figures la and b. The physical coordinates of the Chimera

interpolation points are fixed in time and can be determined prior to the run.

3 Basics of parallel implementation

It is evident from the above des<iption that the solution process for realistic flow problems

features at least one level of exploitable parallelism, known as coarse-grained parallelism;

the computation of the flow solution on individual grids can be carried out independently

by different processors, as described in our previous work [1, 6]. There we presented results

of running OVERFLO\V in parallel and distributed environments. That version of the code

(See [13. 15]) did not allow individual grids to be distributed across several processors, and

hence presented a load balancing problem in case of large disparities between grid sizes.

T}l__ nmv xorsi_.,tl ¢les_r!}_,_t tl,_r_,. _hi_* to .l<_p_,rsen [G. 7. 3 I. sol_,s part of this pr¢,bl_'m by

providing the means of paraltelizing the solution process wzthm a single grid: it provides a

-_'c,,nd level of _'xploit_Me parallelism. While this allc_ws us in principle bettor to balance tile

computational load among the processors, three important sources of overall load imbalance

remain.

First. all grid points are currently given equal weight in terms of associated work. How-

ever. some of the near-body grids require more work per point, because they need to solve

the turbulence model in addition to the flow equations. For better load balance we need to

give different weights to points inside turbulence regions than to points outside of them.

Second. processors mav either solve part of one large grid, or one or more whole grids,

but not both. This means that once a processor receives work for part of a larger grid, it

cannot further reduce any load imbalance by receiving more grids or grid fragments.

Third, even if the computational work is divided completely evenly among the processors,

load imbalances may still result from disparities in communication volumes. The reason for

this is twofold. First. if a large grid is distributed across multiple processors, the implicit

solution process within this grid must be parallelized, which ordinarily requires a significant

amount of communication (indicated by the heavy arrows in Figure ld). This communication

is in addition to any communications required to interpolate data from different neighbor

grids. Second. the grid grouping and splitting strategy currentlv does not explicitly take

into account the magnitude of the data volume incurred bv the decomposition. In [1] we

described a wav of minimizing the maximum communication volume between processors.

This strategy will have to be further refined to reflect the possibility of individual grids

being distributed. We discuss a promising new load balancing strategy in Section 6.1.

Some basic features of the parallel strategy implemented in the OVERFLOW code, used

for the experiments reported in this paper, are discussed in subsequent subsections.

3.1 Grouping strategy and grid splitting

The first step of the parallel algorithm involves a simple bin-packing strategy that forms a

nunlbpr ot' gl-,)!lps. ,,ach ((m>isting t)f a gri(l an(t/'_)r a ¢tu_r,r ()[" grids. If n(_ further work

division takes place, the total number of grid points per group is limited by the nwmorv

space allotted to each i)ro,e.-,sc, r..-ks we reported in ill. this strategy may pruduce a poor

load balance, depending on the total number of grids and the size of the large grids in

the grid system, and the number of processors available. To fix this. the current grouping

strategy in OVERFLOW allows us to divide large grids evenly across multiple processors

while maintaining the implicitness of the numerical scheme within the grid; however, because

a processor receiving part of a grid needs to exchange information with the other parts several

times per time step during the implicit solution process, it effectively needs to execute in

lockstep with the other processors working on the grid. This has led to the requirement that

a processor receiving a partial grid not receive an}" other work, to ensure that it will not

cause the other processors working on the grid to go idle. As a consequence, each part of

an equi-partitioned large grid sits in a group by itself. See Figure lc. The total number of

processors equals the total number of groups. All processes run in parallel; this is viewed as

inter-group parallelism.

The grouping algorithm is implemented as follows. First. the programmer specifies the

maximum number ngpm,,:: of grid points that each processor may receive. This number

is usually, though not necessarily, related to the amount of local memory available on each

processor. Since the total number of grid points ngptot for a certain overset grid configuration

is given, we can now determine the minimum number of processors NP, u_, required to fit the

configuration, i.e..VPmm = [ngpto_/ngpm,_x]. Next, we sort the grids bv size in descending

order, and break up any grids whose size ngp exceeds the maximum into [ngp/ngpm,_x]

pieces. Each such piece is assigned its own group, and hence its own processor, as indicated

above. The remaining whole grids whose sizes are below the maximum are assigned to

processors in the fashion described in our earlier work [1]. That is, the largest remaining

grid is assignedto the next availableprocessor,until all .VPm,nprocessorsown at leastone

grid. Eachsubsequentremaining grid is assignedto the processorthat is responsiblefor the

smallest t_al numt)_r_)fgrid p_int_ thus far. \Vhe;__lomor__grids can he placardwithou_

exceedingthe maximum numbexof points per processors,the remaining numberof points is

determined,aml the :::inimum correspon(tingImnll)er of additional processorsis computed.

\Ve repeat the processof assigningwhole grids to processorsbasedon the new processor

count, until all grids can be placed.

OVE1RFLOWusesexplicit messagepassing,basedon the standard MPI library, for com-

municating inter-grid boundary data betweenprocessors.This approach is suited for both

distributed and distributed-shared memoryarchitectures. With grid splitting, messagepass-

ing is alsorequired betweenprocessorsworking on the samegrid. SeeFigure ld. Also, in this

case.data communication is achievedby meansof manager-worker(master-slave)paradigm

betweengroups of a partitioned zone. One of the processorsworking within a subparti-

tion of a zoneis selectedas the managerofall the other processorswithin the subpartition.

Upon completion of one time-stepon a partition zone,all the inter-group Chimeraexchange

betweenthe partitioned zoneand other groups is achievedvia the master processors.

The steps in the implicit flow solution in which thesecommunicationstake placearedur-

ing the evaluation of the so-calledright hand side (a data parallel stencil operation), which

constitutes a nonlinear forcing term, and during the so-calledline solvesin the Alternating

Direction Implicit algorithm. The line solves,which take placein all three coordinate direc-

tions, feature a data dependencein the active coordinate direction, which is resolvedusing

pipelining. Finally, sometypes of non-local boundary conditions may also require commu-

nications (for example, so-called C-grid conditions), but these usually involve a negligible

amount of data. A detailed analysis of the right hand side calculation and the line solves

shows that an intra-grid interface point involves the communication of 76 eight-byte words

per time step, whereas a Chimera interpolation point "consumes" only 5 words per itera-

tion (without turbulence model). This disparity, in communication size per interface point

6

is indicated in Figure ld by the relative thickness of the arrows that symbolize inter-group

communications.

Intra-grid ('onmm_:icatiot:_ take place through updates _,f "halos" of ow, rlap points :7].

\Vhile this is a well-understood process, it adds significantly to the complexity of the implicit

.soluti,,:a process, and reqllires many ,hanges t,, the serial version ,>f the code.

3.2 Parallel and serial Chimera update

.-ks discussed above, boundary information is interpolated between overlapping grids at each

iteration. In serial version of the code, upon completion of of the n-th time-step iteration on

one grid, its chimera updates become available to other grids and can immediately be used by

the subsequent grids in their n - th time-step iteration. In parallel version, chimera updates

take place at the the end of completion of n - th step over all groups; hence, interpolated

data on all grids lag by one iteration.

Grids that overlap with other grids in the same and in a different group perform intra-

and inter-group interpolations, respectively, between processors. The donor values supplied

to the neighboring group are computed locally and then exchanged using MPI calls. This

approach is outlined schematically in Fig. 2, where two groups are shown, each containing

two grids. Both intra-group and inter-group interpolations take place at the end of each

iteration; hence, interpolated data on all grids lag by one iteration.

The major computational loops at the top level of the code include the Time-step loop

and the Grid loop. Computations at the latter can proceed either sequentially or in parallel

for the serial and parallel codes, respectively, as discussed above. In the serial code, the

update is achieved under the Grid loop; whereas, in parallel codes the updates take place

under the Time-step loop, outside the Grid loop. This may be thought of as a block-Gauss-

Seidel iteration versus a block-.Jacobi iteration. The stability region for the former is larger

than for the latter, which translates into a faster convergence to a final, steady-state solution.

The significant effects of the parallel versus serial updates in practical applications, depend

on the topology, of the grid configuration, connectivity and fiowfield features, time-step, CFL

number, and other input parameters used. For the same application, the Jacobi iteration

mar ro(illir(, a _mallor ,inw s,'-p and/or CFL number for convergence of solutions. In such

cases the convergence may be influenced bv adjusting some algorithmic parameters locally

()n _)ach gri(t. A diagram of major OVERELO\V loops for parallel and serial codes depicting

tile Chimera boundary updates are shown m Figure 3.

4 Parallel distributed computing

One of the early implementation of distributed computing has been the Parallel Virtual

Machine (PVM) [10] library. This approach has already been used in isome older version

[2. 3] of OVERFLOW. with some limitations. For example all remote computer resources

had to be named within the application program, and necessary input data had to be moved

to proper location by the user. and number of issues on security and accounting had to be

resolved.

The distributed computing methodology, used in this work is based on the NASA In-

formation Power Grid (IPG) project [12]. It is one of several infrastructural approaches

to so-called grid computing [9]. IPG provides an environment for resource management

with the ability to unify, multiple physically separated computational resources into a single

virtual machine. CFD solutions to geometrically complex, large-scale problems, whose com-

putational memory requirements exceed that of the memory space of available individual

resources, can potentially be obtained by employing widely distributed computing; A large

data set can be decomposed into an assembly of smaller, more manageable data sets, and

then be distributed across a collection of specified resources. This mode of application is

usually called "parallel distributed computing". Another area of application that can sig-

nificantly exploit this capability, would be the parametric study of a large scale problems

where real-time CFD solution data of various flow parameters is essential. This mode of

8

application may be thought of as "embarrassingly-paralleldistributed computing"• In this

paper we describe some experiments of both the plain parallel and the parallel distributed

computing modes, applied t_ "he OVERFLO\V cocle.

The " parallel-distributed'" methodology is similar to that of the parallel code. It uses the

_,an, groc_p -:t;,tcgv ,:ml p,rr_nen_ pmce._s_,t assignment _]i_('usse([above, but processes are

now distributed across distinctly specified resources. The schematic of distribute(t computing

is shown in Fig. 4. In this fi_ure, grid zone 1 and 2 are clustered into group 1 and zone 3

into group 2 by itself. The two processors assigned to both groups 1 and 2 are selected from

resource 1. Similarly, zones 4 and 5 are clustered into group 3 and each equi-subpartition of

the large zone 6. is assigned to groups 4 through 7. All the processors assigned to each of the

groups 3 to 7 are selected from resource 2. Resources I and 2 are physically separated. Solid

and broken two sided arrows show data communication within each resource and across the

resources.

It should be noted that grid splitting is now only allowed within a single resource, in

order to avoid too voluminous communications between geographically separated machines.

The total number of groups is equal to the total number of CPUs available from all resources.

Inter- and intra-grid bounda_" data has to be transferred between processors as before, again

using explicit message passing. This is implemented via the MPICH-G [11] communication

library, in conjunction with the Globus Metacomputing Toolkit [8]. Functionally, the entire

application is run as a single message-passing program under MPICH, and the application

programmer need not be aware of any distinction between the multiple machines.

5 Results

Several experiments are presented to demonstrate the parallel and distributed computing

performance of the OVERFLOW CFD code discussed above. Parallel performance results

on single, tightly-coupled machines, SGI Origin2000 (O2K) and Crav T3E, are discussed in

9

Section 5.1, using two large-scale, practical application problems, consisting of static grid

systems with a total of 9 (MEDIUM) and 33 (LARGE) million grid points, respectively.

Disrributo_t paratlol computing performanco analysis on NASA IPG testbed systems.

O2K. at Ames. Langley and Glenn Research Centers. using the .kIEDIU.M grid case above.

is discussed in Section .5.2.

5.1 Parallel Performance

The current version of OVERFLOW has been run on an O2K, R12000, 300MHz, with a

total of 128 processors, and on a Cray T3E, 300MHz, with a total of 512 processors. Test

cases are as follows:

• MEDIUM consists of a wing-body configuration mounted on the splitter plate of the

.NASA Ames 12-Foot Pressure Wind Tunnel (PWT), where internal flow at the test

section of the tunnel and about the model has been simulated. The flow domain is

discretized with 32 overset grids, and a total of about 9 million grid points.

• LARGE consists of a complex configuration of a high wing transport with nacelles and

deployed flaps, discretized with 153 overset grids, and a total of about 33 million grid

points.

Figure 5, shows an isometric view of some overset grids for a generic wing-body test object

mounted in the 12-Foot PWT for visualization of grids, and Fig. 6 displays the corresponding

solution (pressure). The simulation of the tunnel's internal flow about the model takes into

account the effects of the tunnel wall and other support equipment interferences. For all test

cases discussed here. the main code specifications are the one-equation Spalart-Allmaras

turbulence model,, the Roe upwind scheme, and the ARC3D 3-factor diagonal scheme, along

with the usual second and fourth order smoothing options. Performance statistics of various

scaling data are shown in Table 1. The table lists data for the MEDIUM test case and

consists of wall-clock time (in seconds/time step), million of floating point operations per

10

second (Mflops). and the ratio of average to maximum inter-group (Chhnera boundary)

communication times. Data transfer times for the intra-grid communications are not listed

s,'t)arately. The ._lflol> r_'porte.d on the O2t,2 and the T3E are calc'ulat_',l relative to the Crav

C90 .XIflops with one CPU executed on the same problem.

The T3E is a purely distributed-memory machine, and the si,',' ,,f .\IPl Im,,+._ses run on

a node is limited by the physical memory located on that node. Thus the smallest number

of nodes on which the .XIEDI[_._[test case can be run is 88. while t.he LARGE case requires a

minimum of 2O3 nodes. By contrast, the O2K allows MPI processes to use as much memory

as is physically available on the whole machine, so no minimum number of nodes is required

to solve both test cases. However, we do try to maintain a reasonable balance between

number of nodes requested and maximum amount of memory used, so that the interference

with jobs run bv other users is minimized.

We conclude from Table 1 that the MEDIU*I grid configuration allows reasonable scaling

up to 124 and 271 processors on the O2K and T3E, respectively. The average speedup on

O2K, as compared to the machine linear speedup, based on 4 CPUs, is about 40% for a

number of processors in the range of 60 to 124. The code achieves a maximum of 7600

Y,lflops on O2K with 124 CPUs, as compared with approximately 4000 Mflops on the Cray

C90 with 16 processors using the serial code with multitask directives. Similarly, the LARGE

grid case results, shown in Table 2, indicate that this configuration scales well up to 96

and 510 processors on the O2K and TaE, respectively. Here the speedup characteristic on

the TaE, is calculated based on 203 processors and appears to be linear, but only over a

range where the ratio of maximum to minimum number of processors is about 2.5. The

O2K experiences the same linear characteristic, based on 16 processors with the ratio of

maximum to minimum about 8 for up to 96 processors and then tapers off for a larger

number of processors.

It is interesting to note that scalabilitv on the O2K tapers off sooner for the LARGE

grid system than for the MEDIUM size configuration. This counterintuitive result is due to

11

the different distribution of gTid sizes and inter-grid communications, and the concomitant

poorer load balance. Oil the Crav T3E the performance for the MEDIUM case deteriorates

beyond 271 ('PUs dllo to conmmnication overhead as compared to computation. For the

MEDIUM case. average number of grid points per processors is less than 23.000 points for a

total of 400 CPUs on the T3E. an order of magnitude less than the capacity per processors.

Where as tile average grid points per processors for the LARGE grid case on the T3E. is

about one fourth of the capacity.

5.2 Parallel distributed computing performance

The NASA IPG testbed currently consists mostly of O2K, RIO000, 250MHz, systems, and

this is the platform we used for the parallel distributed computing experiments. The choice

of an all-O2K distributed system was motivated by the desire to eliminate heterogeneity as

a possible additional source or load imbalance. The machines used are Evelyn, Whitcomb,

and Sharp, located at NASA research centers in California (Ames), Virginia (Langley), and

Ohio (Glenn), respectively.

Since intraogrid partitioning is much more communication intensive than inter-grid Chimera

interpolation, partitioned grids are never split across multiple geographically separated ma-

chines. Moreover, the boundary condition deferment method for latency hiding, described

in our previous work [1], is applicable only to Chimera updates, not to the pipelining of the

implicit solver in OVERFLOW.

The results of our experiments are summarized in Table 3 for the MEDIUM size config-

uration only, because the testbed systems at the moment have relatively modest amounts

of memory. Several runs were made on various numbers of processors selected from each

machine. Listed in the table is a sample run with a total of 2. 4, 8, 16, and 24 processors

on multiple resources. Also. listed in the same table for comparison are results for the same

number of processors, but on a single resource. There are two numbers listed for communi-

cation time..Min./Max., in the last column of Table 3. For claritv of illustration, we assume

12

a total of 8 processors were selected. The communication time for each of the 8 processors

would be deferred depending upon the group to which they were assigned. The minimum

aml maximun_ for c_,_:mmni_ _,ri(_n tim_,s t_v(u th(, S I._r¢_ccsst_rs ar_' shown in th,' ralph,. The

column entitled 'wallt!me in Table 3 refers to execution time per time-step in seconds which

consists of computation anti ,_ommunication times an,i i_ about the same over all proc_'ssors.

It is evident from this table that the scalability of the code on up to 24 processors is

reasonable: although, it is ('lear that communication overhead becomes increasingly signifi-

cant if more than 8 processors are used. The comparison of communication times, multiple

resources versus that of the single resource, shows that both Min. and Max. communication

times are significantly increased. The Min. communication time is about an order of mag-

nitude larger on multiple distributed resources. Although the Max. communication time,

for a total of 4. 16 and 24 processors, are very close to each other for the runs on multiple

and single resources: it should not be understood that the timing reported, is necessarily

associated with the same group. For instance, if the communication time for a group named,

A, on a single resource is larger than for group B, it may produce different results when

the same if the same job runs on distributed resources. The outcome totally depends on

the volume of data exchanged for each group and how the groups are distributed across the

resources. The increase in the magnitude of Min. communication time for the distributed

case clearly depicts the impact of a lower rate of data transfer across the separated resources.

This points to the necessity of load balancing and latency hiding, as argued in the Section 6,

below.

The comparison of execution time on distributed versus single resources clearly reflects

the integrated effect of computation and communication on execution time. Walltimes for

the distributed runs are consistently larger than similar runs on a single resource, but they

fall in a range well accepted for many applications. An analysis of walltime characteristics for

distributed versus single resources, such as plots of walltime versus the number of processors,

demonstrates similar scalable performances. Future plans will explore further algorithmic

13

enhancementand experimentson varioushomogeneousand heterogeneoustestbedsfor large

scaleapplications.

6 Challenges

The performance results discussed above demonstrate the feasibility of parallel and dis-

tributed computing on homogeneous IPG testbeds; thev further show that performance is

significantly affected by an increase in communication over computation time. In a true IPG

environment, poorer connectivity and larger latencies due to geographical separation of the

computers used, could further impact performance. Modifications must be made to minimize

communication overhead and to hide latency by overlapping communication with computa-

tion. These two phases of modification, known as "load balancing" and "latency hiding",

will be necessarv for large-scale computations that involve a large number of processors.

Currently, none of the aforementioned techniques have been implemented on OVERFLOW.

6.1 Improved load balancing strategy

It is evident from Tables 1, 2, and 3 that there is a significant imbalance in the amounts of

time spent on communications between the processors. The computational load imbalance

is not listed explicitly, but it is on the order of 20% or more for most cases. Consequently,

significant room for improvement is present. We propose the following strategy for better

balancing the load, which requires some new definitions.

Introduce the concept of effective grid points. These are weighted such that each effective

point takes the same amount of computational work. The weight will be deduced from the

presence or absence of a turbulence model for the grid under consideration.

Introduce the concept of effective communication volume, to be associated with exterior

grid boundaries (related to Chimera interpolation updates), and with internal grid bound-

aries (related to partitionings of individual grids and the ensuing communications required

14

by the implicit solution process). This volume equals the number of interface points, times

the relative weight of the points (5 for Chimera points. 76 for internal boundary points).

Tile first step in improvin 4 rile current algorithm is to allow processors to work on .job

mixes that contain both partial and whole grids. Since subdividing single grids incurs a

significant communication cos_. we use the heuristic that it is best to limit that partitioning

process to the smallest number of subdivisions possible. Hence, we use the method outlined

in Section 3.1 for distributing those grids that exceed the maximum number of points allowed

per processor, regardless of the number of effective points involved.

Subsequently, we construct a graph whose nodes consist of the numbers of effective grid

points per grid or--for distributed grids--per grid subdivision, and whose edges consist of

the effective communication volumes between grids and/or subdivision. This graph can then

be partitioned using any of a number of efficient graph partitioners (for example, MeTiS

[4], as proposed in [1]) that are capable of balancing total node weight per partition while

minimizing total weight of the cut edges. The only constraint is that no partition receive more

than one grid subdivision. However, the way that subdivisions are created guarantees that

no more than one of them will tit on any processor anyway, so the constraint is automatically

satisfied. The reason why processors should not receive more than one partial grid is that all

processors that cooperate on a particular grid need to synchronize. If processors participate

in multiple such synchronized operations, it quickly becomes impossible to balance the load.

But if they only participate in one during each time step, this can be scheduled as the first

computational task to be performed, and no synchronization penalty is incurred.

When the partitioning is complete, several processors will generally be oversubscribed.

That is, they will have received too many" grid points. The number of points in the excess

grids is then totaled, and a new number of processors is extrapolated from it, after which the

assignment process is repeated until no processor exceeds the maximum allowable number

of points.

Implementation of this strategy for the current version of OVERFLOW requires only'

15

little coding, and will be carried out for the final submitted version of this paper.

Extension of this method to a widelv-distributed computing environment is relativelv

straightforward: the zroupin_ strategy takes place in two stages. The first only assigns

collections of whole grids to individual, geographically separated platforms, whose compu-

tational resources are listed as aggregate quantities. Again. w_ use a graph partitioner to

balance computational loads and to minimize communication volumes. In the second stage

a careful load balance is obtained within each platform, using the method above.

6.2 Latency tolerant

The second attempt for improving performance of distributed computing is based on tech-

niques that can hide communication while computation is in progress. One such approach

was implemented and tested in our previous work [1]. In this approach, named, Deferred

Strategy, the time-advancement procedures of the solution scheme were altered. With the

original time-stepping procedures, upon completion of computation over all groups, Chimera

boundary data is updated and exchanged prior to the start of the next time step. In the

deferred scheme, the next time-step computations can start with the previous updates and

also in the absence of recent Chimera updates, while this data is being communicated across

processors.

In the deferred scheme Chimera updates lag one time-step behind as compared with the

original time-stepping scheme, introducing further explicitness into the iteration procedure

that might possibly deteriorate the stability of solutions, see See. 3.2. Experiments conducted

with this approach show no degradation in convergence of the the solutions for a rather large

scale steady-state application. However neither do they show any significant improvement

in performance on two separated O2K machines for a combined total of up to 8 processors.

A successful approach would require a co-processor to be allocated for data exchange alone,

freeing other processors for computation. This idea, known as *IPI-hide, was initiated a,s a

research project at the time of this work, at Argonne National Laborotary, but as yet has

16

not been implemented in the OVERFLOW code, but it is a subject of future research in this

area.

References

[1] $. Barnard. R. Biswas. S. Saini. R. Van der Wijngaart..M. Yarrow, L. Zechtzer, I. Foster,

O. Larsson. Large-scale distributed computational fluid dynamics on the Information

Power Grid using Globus. Frontiers of .Massively Parallel Computation, February 21-25,

1999

[2] P. Buning, W. Chan, K. Renze, D. Sondak, I.-T. Chiu, J. Slotnick, R. Gomez, and

D. Jespersen. Overflow user's manual, version 1.6au. NASA Ames Research Center,

1995.

[3] D.C. Jespersen. Parallelizing overflow: Experiences, lessons, results.

HPCCP/CAS Workshop, August 25-27, 1998.

In NASA

[4] G. Karypis and V. Kumar. A fast and high quality multi-level scheme for partitioning

irregular graphs. Department of Computer Science Tech. Rep. 95-035, University of

Minnesota, 1995

[5] T. Pulliam, D.C. Jespersen, and P.G.Buning. Recent enhancements to overflow. AIAA-

97-0644, 1997.

[6] M.J. Djomehri and Y. Rizk. Performance and application of parallel overflow codes on

distributed and shared memory platforms. In NASA HPCCPfCAS Workshop, August

25-27, 1998.

[7] G.P. Guruswamv. Y.M. Rizk, C. Byun, K.Gee, F.F. Hatay, and D.C. Jesperse. A

multilevel parallelization concept for high-fidelity multi-block solvers. In SC97: High

Performance Networking and Computing, San Jose, CA, November,1997.

17

[8] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Interna-

tional Journal of Supercomputer Applications, 11:115-128. 1997.

9 I. F_ster and C. IG, sselman. _,ditors. The Grid: Blueprirlt for a .Yew Computing ITzfra.s-

tructure. Morgan t-(aufinann. 1999.

i10! A. Geista. A. Beguelin..1. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:

Parallel Virtual Machine. MIT Press, 1994.

[11] W. Gropp. E. Lusk. N. Doss, and A. Skjellum. A high-performance, portable implemen-

tation of the MPI Message Passing Interface Standard. Parallel Computing, 22:789-828,

1996.

[12] W. Johnston, D. Gannon. and W. Nitzberg. Information Power Grid implementation

plan. Working Draft, NASA Ames Research Center, August 1999

[13] R. Meakin. On adaptive refinement and overset structured grids. In 13th AIAA Com-

putational Fluid Dynamics Conf., AIAA-97-1858, 1997.

[14] J. Steger, F. Dougherty, and J. Benek. A Chimera grid scheme. ASME FED, 5, 1983.

[15] A. Wissink and R. Meakin. Computational fluid dynamics with adaptive overset grids on

parallel and distributed computer platforms. In Intl. Conf. on Parallel and Distributed

Processing Techniques and Applications, pages 1628-1634, 1998.

18

a) Overset grid schematic

i Grid 1_

c) Grouping strategy

b) Inter-grid data exchange (Chimera
interpolation): exploded view

d) Inter-group communication

Inter-

/
/

\
\

\
m_._ter/

,.lave

/
/

/
/
/

Figure 1' Basic partitioning strategy.

19

Group 2

 rou0,-"
--I-- T -I-- T --I-

__l__ --1"=4 J I I

I I I I t p

-I- T -J- T -I- -I _.'11 L .J I_

Inte, r__r,.o:p, T_,._

-'- * -'- _ -'- _ -'- J .I -"-c....L

--I-- T --I- T -I-- T -I-_

Figure 2: Inter-group interpolations between grids.

2O

Serial code

--- Time-step loop

-- Zone loop

Chlm_ a U____

-- End

---End

Block-Gauss-Seidel Iteration

(larger stability region)

Parallel code

--- Time-step loop

II Parallel loop over groups
II

II

--- End

Block-Jacobi Iteration

Figure 3: Logic flow for serial and parallel versions of OVERFLOW

,J|l-l,'ll='=--'!--=--4"

! I I -]_ { _ ', Zone6
..... _l-q-ll i _ J -_ ...
"-:: " - ____l.' ' --' ' ' l _-ar_itloned

;!_ _7
zone3LLLJ 5 :

I _-_-Y{_" r'-._/._ / .,' k___ _-_ :I'
/ # / _t_"_-L_:__il

• "' F' 'I 4-1---,L....1--'._,_ , I,_UI_J',I
I _ I IN If'--"_, __ aI

Resource 1 Resource 2

Figure 4: Schematic of OVERFLO\V distributed computing.

Figure 5: Isometric view of winR-bo(ly overset virids in 12-Foot PWT.

.),)

Figure 6: Isometric view of wind tunnel flow solution (pressure).

Machine WalltimeCPUs

(sec/step)

MFLOPS

Origin 2000 4 l 68 540
T

16 18 2055

63 7.0 5257

124 4.3 7667

i

Cray T3E _ 88 17.3 2127

271 L 51 1
i

7.9 -1658

5411

Comm. time

(see/step)

Avg I Max

•3.8 11

37O

i 492 6.8

3 8.8

1.6 3.8

1.1 2.7

3.5 12.

1.2 3.8

1.6 4.1

1.5 3.7

Table 1 Parallel perf(_rnmnc(, tier .kIEDI[XI Test ('as< 9 million grid points.

2 3

Machine CPUs Walltime

(see/step)

MFLOPS

Origin 2000 16 52 2650

48 28.9 4768

96 19.7 6994

124 20.1 6855

CrayT3E 203 34.2 4025

31 4432

22.4 6043

18.1 7613

299

400

510

Comm. time

(sec/step)

Avg] Max

12 24.6

5 12.5

4.5 9.3

5.5 10.9

7.2 20.4

11.7 25.5

5.2 13.3

4.8 12.2

Table 2: Parallel performance for LARGE Test Case: 33 million grid points.

24

Number of Processors

Evelyn

(Ames)

1

2

Whitcomb

(Langley)

Sharp

(Glenn)

0

0

Walltime

(sec/step)

Comm. Time

(secs/step)

Mini Max
1

15

2

4

2

8

2

0

8

0

1 1

0 0

5 1

0 0

12 2

16 0

8 8

0 24

195

175

48

27

98 5 30

9! 0.7 29

52 1 18

43 0.3 9

32 2 16

23 0.1 13

26 2 13

15 0.2 8

Table 3: Parallel distributed performance for MEDIUM test case, using IPG-Globus. Results

on a single resource for the same number of processors are also presented for comparison

purposes.

25

